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We address the issues raised in the preceding comment by Mandelshtam and CaffhgsrRev. E65,
028701(2002], concerning the eigenvalue determination by the spectral filter methods. We argue that the
Fourier transformation is the building block of all currently known time-domain spectral filter algorithms, and,
therefore, the time-energy uncertainty principle affects them all in a similar manner. We also explain the
situation when the correlation function method may be less suitable, in comparison to the filter diagonalization
method, for the determination of eigenvalues, even though both share the same fundamental principles.
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Measurement theory, which has been known since the infhe filtering step is accomplished in practice by using a
ception of quantum mechanics, is based on the notion of th€hebyshev polynomial expansida] for the time evolution

delta function as a limiting process taking place in the Hil-gperator in Eq(1), e ', interchanging the integration and
bert spacéwhich is assumed to be complgsend this notion  the summation operations, and finally carrying out the inte-
is the fundamental thesis behind all currently known time-gration over the time variable analyticall§]. This gives the

domain spectral filter algorithms, as popularized by the work|iowing infinite series expansion for the filtered wave func-
of Wall and Neuhausefl]. This fact, which was amply jgns:

elaborated by us in Ref2], has been ignored by Mandelsh-
tam and Carrington JIMC) (preceding commeh{ 3], who

N— o0

prefer to dismiss the measurement analysis as a mere “philo- 2 _

sophical” discourse and hence “controversial.” This is un- |p(X,Em))= H(l—Em)fllszo (2

fortunate. In the following, we argue that the filter diagonal- -

ization method(FDM) is a straightforward implementation _5kO)Tk(Em)Tk(ﬁ)|‘//(X!O)>v )

of the notion of the delta function as a selective measure-

ment, contrary to the MC’s claim of this being a purely sig-

nal fitting problem. In fact, MC’s description of the FDM as where E,, and H are the normalized filtered energy and
a “harmonic inversion” problem, though conceptually cor- Hamiltonian, respectively, and\ is the scaling parameter.
rect, misses the real issues. MC also compare the perforn this way, the overlap and the Hamiltonian matrix elements
mance of the FDM with the correlation function method required for subspace diagonalization in step involve a
(CFM), for the purpose of eigenvalue location. As we elabo-product of two infinite seriefEq. (2)] and it turns out that a
rate in the following, this comparison is misplaced as it com-partial summation of this double infinite series can be done
pletely glosses over the issue of spectral intensities. We alsgnalytically, leaving behind a single infinite ser[€s6]. The
point out that the role of the time-energy uncertainty prin-final results are shown in Reff2]. Our analysis thus shows
ciple can be discussed separately for the FDM and the CFMhat the FDM is a Fourier transformatidfT), that is, Eq.
and there is no reason to mix them to address this issue. Wa), followed by diagonalization. We believe this is what has
first briefly summarize the principles behind the FDM andbeen called a “harmonic inversion” in the filter diagonaliza-

the CFM. tion literature as well as by MC in the preceding comment
The FDM consists of two partsa) filtering a set of wave [3].
functions,|#(x,Er)), from an arbitrary state(x,t=0)), Similarly, the CFM also consists of two parts) filtering

which is not orthogonal to the eigenstates of the Hamil-spectral intensitiesC(E,,) = {#(x,0)| ¢(x,E)), (rather than
tonian, and,(b) diagonalizing the Hamiltonian in the sub- wave functions as is done in FDMand (b) location of ze-
space of filtered wave functionsp(x,Ep,)), to finally com-  roes ofd C(E)/dE to determine the eigenvalue positions. For
pute the spectrum. In stef@), one employs the integral step(a) we use the Fourier integral theorem as follows:
representation of a limiting approximation to the delta func-

tion, S(E—H), whereE andH are the filter energy and the

system Hamiltonian, respectively. One example of this lim-  C(Em)=(#(x.0|8(Eq—H)|¢(x,0))
iting approximation is 14¢)sinc(E—H]/¢), where 1 [+T ' .
sinc(x) =sin(X)/x, in the limit {—0. Thus we have = lim ﬁf . ((x,0)[€'Em= 1 4(x,0))
2T )
— O N—s 0
| (X, Em)) = 8(En—H)|¢(x,0)) _ i(l—Em)*l’ZE (1— @)Tk(gm)
1 +T A) A)\ k=0 2
= Iim—f dt & Em MY y(x,00). (D) _
T 2T )T X0 Ti(H)|#(x,0), ()
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where in the last step we use a Chebyshev polynomial ex:
pansion[4] for the time evolution operatoe M, inter-
change the integration and the summation operations, an
analytically integrate over the time varialjfg]. In the CFM,

we thus directly obtain the spectral intensities opposed to
wave functions in the FDMand the eigenvalue location is,
therefore, a by product.

Now, in the absence of stefb) in the CFM, a “stick
spectrum,” showing the exact location of eigenvalues, will
appear only when the time goes to infinity, which reflects a
limiting process involved in the Fourier transform. Likewise,
in the absence of step) in the FDM, exact eigenfunctions
will appear only when the time goes to infinity. In either

C(E), arbitrary units

case, we may stop the limiting process after a predetermine(oms  orr o  oms o8 osn  ome  oms

Energy, E

accuracy has been achieved. We thus see that the filtering
step[i.e., step(a) in both casef which is the most time- FIG. 1. The correlation amplitude&(E), as a function of en-
consuming step, is common in both methods because we Uggyy E. The intensity is plotted in arbitrary units.
the same integral representation of the delta function in both
cases. It is at this step where we need to discuss the issue @ferlap with all the eigenstates of the Hamiltonian, hence
the time-energy uncertainty constraint. In the context ofallowing the CFM to give the best answgor the purpose of
spectral determination, the time-energy uncertainty principlgust eigenvalue locationsn all situations? This is an open
has mainly been discussed for the CFM route, where weuestion and at present no general answer is known. How-
strive only to separate all the peaks; and it has always beesver, this problem can be at least partly ameliorated by using
implicit that, after separating all peaks, finding the exact lo-a damping functiorfe.g., Gaussian dampintp suppress the
cation of the eigenvalues will require the location of zeroessinc oscillations in the spectrum. Incorporation of a damping
Similarly, in the FDM we strive to precondition the basis by function is equivalent to approximating the delta function by
time propagation(or equivalently, Chebyshev recursigns the limiting form, other than the sinc function used here. On
just enough so that the eventual diagonalization will give thehe other hand, the FDM or the Lanczos recursion is not
eigenvalue positions faithfully. Preconditioning may be con-dependent upon the initial wave function for the purpose of
sidered as equivalent to separation of peaks in the CFMeigenvalue location, since the FDM filters the wave func-
Hence we make the comparison of “just separation oftions, as opposed to the spectral intensities, and finally com-
peaks” in the CFM to “necessary and sufficient precondi- putes the eigenvalues by explicit diagonalization. However,
tioning of basis” in the FDM, because the question of time-the spectral intensity may be difficult to compute by the
energy uncertainty only lies here. FDM, if some states have very small overlap with the initial
Before we discuss the uncertainty principle, we clarify awave function. It is thus clear that step) in the FDM
practical limitation of the CFM for the purpose of eigenvalue (which involves diagonalizationis more efficient for the
location, as this was not sufficiently addressed in RBf.As  eventual determination of eigenvalues than is $®pn the
we have used the sinc function to approximate the delt& FM, which requires location of zeroes.
function and we do not exhaust the limiting process, the Now we come to the role of the time-energy uncertainty
spectral intensities will have the features of the sinc functiorprinciple in the FDM and the CFM. We have already pointed
at the location of each eigenvalue. Now, if an eigenstate hasut that the same prelimit integral representation of the delta
a very small intensity compared to its close neighbors, itfunction is used in both CFM and FDM. We thus ask the
spectral features will be masked within the sinc structure ofjuestion: How many Chebyshev recursions are required in
the neighboring peaks and thus it will not be identifiable.the CFM (assuming all the eigenstates in a given window
That is precisely what is reflected in Fig. 2 of Rgf], which ~ have sulfficient overlap with the initial wave functjoio
has been reproduced in Fig. 1 of the preceding comifigdnt cleanly separate all the peaks so that the eigenvalues can be
This means that the eigenvalue location by the CFM is criti-obtained by locating zeroes; and similarly, how many Cheby-
cally dependent upon the choice of the initial wave function,shev recursions are required in the FDM, so that the eventual
and the best result would be obtained in the situation whetocation of eigenvalues can be accomplished by explicit di-
the initial wave function has equal overlap with all the eigen-agonalization? The total number of Chebyshev recursions
states of the Hamiltonian. In order to test this proposition, wecan be related to the total time propagation, as we know that
have now purposefully selected the initial wave functionthe Chebyshev expansion of the time propagator, which has
such that it has equal overlap with all the eigenstates of thbeen used here in both the FDM and CFM, converges expo-
model Hamiltonian studied in Reff2], and this was accom- nentially if the number of recursions is larger than the time-
plished by explicitly using the eigenvectors of the Hamil-energy = phase-space  volume,tAN, where A\
tonian. We present the computed spectrum in Fig. 1 herg=0.493 222 455, for the Hamiltonian under studythe pa-
which clearly shows all the eigenvalues in the window. Thisrameter used for scaling the Hamiltonian. For further discus-
observation thus poses the question: Is it possible to “presion, it is useful to define a quantify such that (2ZrA\)f
condition” an initial arbitrary vector so that it has significant =the number of Chebyshev recursionsigenvalue spacing
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in the window. Therf gives a measure of the relative phasea large difference irf for the smallest and the largest level
an individual eigenstate receives in the computation, fand spacings, it is not surprising that the widely separated eigen-
=1.0 can roughly be taken as the time-energy uncertaintyalues converge much faster than the denser ones here.
boundary. That is, if is less than unity, the calculation has ~ The preceding commef8] compares the FDM with only
“broken” the uncertainty constraint. If there is a significant Step(@) of the CEM(which is filteration accomplished by the
difference between the values fWith respect to the small- FT) and justifies the statement that the FDM bypasses the
est and the largest eigenvalue spacing, the well-separatéticertainty regime. This is unfair, since it is clear that the
eigenvalues will converge faster than the denser region of theEDM is a FT followed by diagonalization, whereas CFM is a
eigenvalue window. We have usedl2 14 000 recursions in FT followed by location of zeroegvide supra. Thus, the
the CFM to compute the spectrufd.796 to 0.803 energy Nnumerical efficiency of the FDM for eigenvalue determina-
window) shown in Fig. 1, and thus the total relative phasesiion, can be compared with that of the CFM, only after the
which the levels receive are about 0.98, 0.76, and 1.41 folocation of zeroes have been performed. As the notion of the
the average, smallest, and the largest level spacings, respaticertainty principle comes from the FT and the filteration
tively, in the window. step in both methodfstep(a)] also utilizes the FT, this step
The quantityf was also computed to determine the influ- c@n be unambiguously compared, as we have explained
ence of uncertainty in the FDM calculations and the repreabove.
sentative results were shown in Rg2]. We note that the ~ We now point out the source of convergence for spectral
FDM involves two parameters: the number of Chebyshedilters, which is valid for FDM as well as CFM. In the
recursions, &, and the number of filtered statds, for an ~ Present formulation, we have utilized a Chebyshev expan-
arbitrary selected window. Evidently, the paraméteshould ~ Sion for the time propagatdi] in Egs. (1) and (3). This
be at least as large as the total number of the eigenstates ificludes a Bessel function in the series, whose argument is
the window, and this number & priori unknown. We have the time-energy phase-space volunia), and it is well
also pointed out in Ref[2] that N and L are not totally known that the Bessel function exponentially goes to zero, if
independent parameters and thus there is some latitudt order is greater than its argument. This provides the nec-
(though not a great deah their choice. The preceding com- €ssary convergence for the Chebyshev series. MC, on the
ment[3] highlights this point once again. In our experience,other hand, suggest this convergence due to the “subspace”
the FDM becomes dependent only Nnonce we have cho- aspect of the problem. This is only partly true, as the nature
senL to be sufficiently larger than the number of eigenstate®f subspace is determined by the matrix-vector recursion
in the window. MC also proposes the size of the Se|ecte(ﬂ)rocedure, which is different for different pOlynomials uti-
energy window(W, in the preceding commeri8]) to be lized to expand the time propagator. In fact, the series expan-
variable, and not arbitrarj8], the advantage of which is not Sion of the time propagator with other orthogonal polynomi-
clear for a general situation, including the present one. In anfis (€.9., Hermite[7]) have different rate of convergence.
case, we reconsider the results shown in the preceding com- We now remark on the Lanczos recursion method as it has
ment [3]. For the window with eigenvalue range, 0.796 to been discussed in the preceding comn{@if even though
0.803, MC report that all eigenvalues converge with We did not make such a comparison in H&j. We first note
=6500, though they have not reported the exact valueinf that the FDM shares many operat_|onal details with the Lanc-
their calculations. We have also obtained converged resul&0S recursion method and thus it makes sense to compare
for N=6500 in Ref.[2]. The observation that the widely thelr .numerlcal eff|C|enC|es: Now, since the e|gen\./fc1Iue. is a
separated eigenvalues converge faster than those in thigne-independent concept, it is not mandatory to utilize time-
denser region is not surprising and this can also be undeflépendent methods like the FDM. Therefore, there isano
stood from the parametd; which, for N=6500, is 0.91, Priori limit on the _efﬁmency_ of any algorithm that it hgs to
0.71, and 1.31 for the average, smallest, and the largest levefitisfy the uncertainty principle, as long as we do not invoke
spacings, respectively. This observation was not explicitiyfhe Fourier transformation in its derivation. As the Lanczos
pointed out in Ref[2], as we had then concentrated on ob-method is ba.sed.o_n the principle that a matrix satisfies its
taining all the eigenvalues in the window. own ponnor_maI, it is expected that one has to carry out at
Comparing FDM to CFM, we thus see that the parameteieaS'FM matrix-vector products for 81 XM matrix, |n.order
f is not very different for the same spectral wind¢®796 to 10 fa!thfully recover the whole spectrum. Th|§ point is further
0.803 in the two methods. This leads to the conclusion tha€onfirmed in the preceding commef8]. It is also well
the time-energy uncertainty principle affects both FDM andknown that the well-separated eigenvalues converge much
CFM in a similar manner However, the FDM is better faster in the Lanczos recursion method. Further, it is impor-
suited to practical calculations, particularly in a situationtant to note the observation in the preceding comment that
where the spectral intensity distribution in the initial wave the Lanczos method provides eigenvalues more efficiently
function is not favorablévide supra. For the window with ~ than the FDM for the present model Hamiltonigs].
eigenvalue range 0.644 to 0.682, MC repdrt 3000, com-
pared toN=3500 in Ref.[2]; however, they have not re-
ported the value of. used in their calculations. Even with ACKNOWLEDGMENTS
N=3000, the individual levels in this window receive a
phase,f, of about 2.21, 0.68, and 28.44 for the average, The author would like to thank Professor Robert E. Wyatt
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