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We address the issues raised in the preceding comment by Mandelshtam and Carrington@Phys. Rev. E65,
028701~2002!#, concerning the eigenvalue determination by the spectral filter methods. We argue that the
Fourier transformation is the building block of all currently known time-domain spectral filter algorithms, and,
therefore, the time-energy uncertainty principle affects them all in a similar manner. We also explain the
situation when the correlation function method may be less suitable, in comparison to the filter diagonalization
method, for the determination of eigenvalues, even though both share the same fundamental principles.
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Measurement theory, which has been known since the
ception of quantum mechanics, is based on the notion of
delta function as a limiting process taking place in the H
bert space~which is assumed to be complete! and this notion
is the fundamental thesis behind all currently known tim
domain spectral filter algorithms, as popularized by the w
of Wall and Neuhauser@1#. This fact, which was amply
elaborated by us in Ref.@2#, has been ignored by Mandelsh
tam and Carrington Jr.~MC! ~preceding comment! @3#, who
prefer to dismiss the measurement analysis as a mere ‘‘p
sophical’’ discourse and hence ‘‘controversial.’’ This is u
fortunate. In the following, we argue that the filter diagon
ization method~FDM! is a straightforward implementatio
of the notion of the delta function as a selective measu
ment, contrary to the MC’s claim of this being a purely si
nal fitting problem. In fact, MC’s description of the FDM a
a ‘‘harmonic inversion’’ problem, though conceptually co
rect, misses the real issues. MC also compare the pe
mance of the FDM with the correlation function metho
~CFM!, for the purpose of eigenvalue location. As we elab
rate in the following, this comparison is misplaced as it co
pletely glosses over the issue of spectral intensities. We
point out that the role of the time-energy uncertainty pr
ciple can be discussed separately for the FDM and the C
and there is no reason to mix them to address this issue
first briefly summarize the principles behind the FDM a
the CFM.

The FDM consists of two parts:~a! filtering a set of wave
functions,uf(x,Em)&, from an arbitrary state,uc(x,t50)&,
which is not orthogonal to the eigenstates of the Ham
tonian, and,~b! diagonalizing the Hamiltonian in the sub
space of filtered wave functions,uf(x,Em)&, to finally com-
pute the spectrum. In step~a!, one employs the integra
representation of a limiting approximation to the delta fun
tion, d(E2Ĥ), whereE andĤ are the filter energy and th
system Hamiltonian, respectively. One example of this li
iting approximation is 1/(pz)sinc(@E2Ĥ#/z), where
sinc(x)5sin(x)/x, in the limit z→0. Thus we have

uf~x,Em!&5d~Em2Ĥ !uc~x,0!&

5 lim
T→`

1

2T E
2T

1T

dt ei ~Em2Ĥ !tuc~x,0!&. ~1!
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The filtering step is accomplished in practice by using
Chebyshev polynomial expansion@4# for the time evolution

operator in Eq.~1!, e2 iĤ t, interchanging the integration an
the summation operations, and finally carrying out the in
gration over the time variable analytically@5#. This gives the
following infinite series expansion for the filtered wave fun
tions:

uf~x,Em!&5
2

Dl
~12Ēm!21/2 (

k50

N→`

~2

2dk0!Tk~Ēm!Tk~H̄ !uc~x,0!&, ~2!

where Ēm and H̄ are the normalized filtered energy an
Hamiltonian, respectively, andDl is the scaling parameter
In this way, the overlap and the Hamiltonian matrix eleme
required for subspace diagonalization in step~b! involve a
product of two infinite series@Eq. ~2!# and it turns out that a
partial summation of this double infinite series can be do
analytically, leaving behind a single infinite series@2,6#. The
final results are shown in Ref.@2#. Our analysis thus show
that the FDM is a Fourier transformation~FT!, that is, Eq.
~1!, followed by diagonalization. We believe this is what h
been called a ‘‘harmonic inversion’’ in the filter diagonaliz
tion literature as well as by MC in the preceding comme
@3#.

Similarly, the CFM also consists of two parts:~a! filtering
spectral intensities,C(Em)5^c(x,0)uf(x,Em)&, ~rather than
wave functions as is done in FDM!, and ~b! location of ze-
roes ofdC(E)/dE to determine the eigenvalue positions. F
step~a! we use the Fourier integral theorem as follows:

C~Em!5^c~x,0!ud~Em2Ĥ !uc~x,0!&

5 lim
T→`

1

2T E
2T

1T

^c~x,0!uei ~Em2Ĥ !tuc~x,0!&

5
4

Dl
~12Ēm!21/2 (

k50

N→` S 12
dk0

2 DTk~Ēm!

3^c~x,0!uTk~H̄ !uc~x,0!&, ~3!
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where in the last step we use a Chebyshev polynomial

pansion @4# for the time evolution operatore2 iĤ t, inter-
change the integration and the summation operations,
analytically integrate over the time variable@5#. In the CFM,
we thus directly obtain the spectral intensities~as opposed to
wave functions in the FDM! and the eigenvalue location is
therefore, a by product.

Now, in the absence of step~b! in the CFM, a ‘‘stick
spectrum,’’ showing the exact location of eigenvalues, w
appear only when the time goes to infinity, which reflect
limiting process involved in the Fourier transform. Likewis
in the absence of step~b! in the FDM, exact eigenfunction
will appear only when the time goes to infinity. In eith
case, we may stop the limiting process after a predeterm
accuracy has been achieved. We thus see that the filte
step @i.e., step~a! in both cases#, which is the most time-
consuming step, is common in both methods because we
the same integral representation of the delta function in b
cases. It is at this step where we need to discuss the iss
the time-energy uncertainty constraint. In the context
spectral determination, the time-energy uncertainty princ
has mainly been discussed for the CFM route, where
strive only to separate all the peaks; and it has always b
implicit that, after separating all peaks, finding the exact
cation of the eigenvalues will require the location of zero
Similarly, in the FDM we strive to precondition the basis b
time propagation~or equivalently, Chebyshev recursion!
just enough so that the eventual diagonalization will give
eigenvalue positions faithfully. Preconditioning may be co
sidered as equivalent to separation of peaks in the C
Hence we make the comparison of ‘‘just separation
peaks’’ in the CFM to ‘‘necessary and sufficient precon
tioning of basis’’ in the FDM, because the question of tim
energy uncertainty only lies here.

Before we discuss the uncertainty principle, we clarify
practical limitation of the CFM for the purpose of eigenval
location, as this was not sufficiently addressed in Ref.@2#. As
we have used the sinc function to approximate the d
function and we do not exhaust the limiting process,
spectral intensities will have the features of the sinc funct
at the location of each eigenvalue. Now, if an eigenstate
a very small intensity compared to its close neighbors,
spectral features will be masked within the sinc structure
the neighboring peaks and thus it will not be identifiab
That is precisely what is reflected in Fig. 2 of Ref.@2#, which
has been reproduced in Fig. 1 of the preceding comment@3#.
This means that the eigenvalue location by the CFM is c
cally dependent upon the choice of the initial wave functio
and the best result would be obtained in the situation w
the initial wave function has equal overlap with all the eige
states of the Hamiltonian. In order to test this proposition,
have now purposefully selected the initial wave functi
such that it has equal overlap with all the eigenstates of
model Hamiltonian studied in Ref.@2#, and this was accom
plished by explicitly using the eigenvectors of the Ham
tonian. We present the computed spectrum in Fig. 1 h
which clearly shows all the eigenvalues in the window. T
observation thus poses the question: Is it possible to ‘‘p
condition’’ an initial arbitrary vector so that it has significa
02870
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overlap with all the eigenstates of the Hamiltonian, hen
allowing the CFM to give the best answer~for the purpose of
just eigenvalue locations! in all situations? This is an ope
question and at present no general answer is known. H
ever, this problem can be at least partly ameliorated by us
a damping function~e.g., Gaussian damping! to suppress the
sinc oscillations in the spectrum. Incorporation of a damp
function is equivalent to approximating the delta function
the limiting form, other than the sinc function used here.
the other hand, the FDM or the Lanczos recursion is
dependent upon the initial wave function for the purpose
eigenvalue location, since the FDM filters the wave fun
tions, as opposed to the spectral intensities, and finally c
putes the eigenvalues by explicit diagonalization. Howev
the spectral intensity may be difficult to compute by t
FDM, if some states have very small overlap with the init
wave function. It is thus clear that step~b! in the FDM
~which involves diagonalization! is more efficient for the
eventual determination of eigenvalues than is step~b! in the
CFM, which requires location of zeroes.

Now we come to the role of the time-energy uncertain
principle in the FDM and the CFM. We have already point
out that the same prelimit integral representation of the d
function is used in both CFM and FDM. We thus ask t
question: How many Chebyshev recursions are required
the CFM ~assuming all the eigenstates in a given windo
have sufficient overlap with the initial wave function! to
cleanly separate all the peaks so that the eigenvalues ca
obtained by locating zeroes; and similarly, how many Che
shev recursions are required in the FDM, so that the even
location of eigenvalues can be accomplished by explicit
agonalization? The total number of Chebyshev recursi
can be related to the total time propagation, as we know
the Chebyshev expansion of the time propagator, which
been used here in both the FDM and CFM, converges ex
nentially if the number of recursions is larger than the tim
energy phase-space volume, tDl, where Dl
~50.493 222 455, for the Hamiltonian under study! is the pa-
rameter used for scaling the Hamiltonian. For further disc
sion, it is useful to define a quantityf, such that (2pDl) f
5the number of Chebyshev recursions3 eigenvalue spacing

FIG. 1. The correlation amplitude,C(E), as a function of en-
ergy E. The intensity is plotted in arbitrary units.
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COMMENTS PHYSICAL REVIEW E 65 028702
in the window. Thenf gives a measure of the relative pha
an individual eigenstate receives in the computation, anf
51.0 can roughly be taken as the time-energy uncerta
boundary. That is, iff is less than unity, the calculation ha
‘‘broken’’ the uncertainty constraint. If there is a significa
difference between the values off with respect to the small
est and the largest eigenvalue spacing, the well-separ
eigenvalues will converge faster than the denser region of
eigenvalue window. We have used 2N514 000 recursions in
the CFM to compute the spectrum~0.796 to 0.803 energy
window! shown in Fig. 1, and thus the total relative phas
which the levels receive are about 0.98, 0.76, and 1.41
the average, smallest, and the largest level spacings, res
tively, in the window.

The quantityf was also computed to determine the infl
ence of uncertainty in the FDM calculations and the rep
sentative results were shown in Ref.@2#. We note that the
FDM involves two parameters: the number of Chebysh
recursions, 2N, and the number of filtered states,L, for an
arbitrary selected window. Evidently, the parameterL should
be at least as large as the total number of the eigenstat
the window, and this number isa priori unknown. We have
also pointed out in Ref.@2# that N and L are not totally
independent parameters and thus there is some lati
~though not a great deal! in their choice. The preceding com
ment@3# highlights this point once again. In our experienc
the FDM becomes dependent only onN, once we have cho
senL to be sufficiently larger than the number of eigensta
in the window. MC also proposes the size of the selec
energy window~W, in the preceding comment@3#! to be
variable, and not arbitrary@3#, the advantage of which is no
clear for a general situation, including the present one. In
case, we reconsider the results shown in the preceding c
ment @3#. For the window with eigenvalue range, 0.796
0.803, MC report that all eigenvalues converge withN
56500, though they have not reported the exact value ofL in
their calculations. We have also obtained converged res
for N56500 in Ref. @2#. The observation that the widel
separated eigenvalues converge faster than those in
denser region is not surprising and this can also be un
stood from the parameterf, which, for N56500, is 0.91,
0.71, and 1.31 for the average, smallest, and the largest
spacings, respectively. This observation was not explic
pointed out in Ref.@2#, as we had then concentrated on o
taining all the eigenvalues in the window.

Comparing FDM to CFM, we thus see that the parame
f is not very different for the same spectral window~0.796 to
0.803! in the two methods. This leads to the conclusion t
the time-energy uncertainty principle affects both FDM a
CFM in a similar manner. However, the FDM is bette
suited to practical calculations, particularly in a situati
where the spectral intensity distribution in the initial wa
function is not favorable~vide supra!. For the window with
eigenvalue range 0.644 to 0.682, MC reportN53000, com-
pared toN53500 in Ref.@2#; however, they have not re
ported the value ofL used in their calculations. Even wit
N53000, the individual levels in this window receive
phase,f, of about 2.21, 0.68, and 28.44 for the avera
smallest, and largest level spacings, respectively. As the
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a large difference inf for the smallest and the largest lev
spacings, it is not surprising that the widely separated eig
values converge much faster than the denser ones here

The preceding comment@3# compares the FDM with only
step~a! of the CFM~which is filteration accomplished by th
FT! and justifies the statement that the FDM bypasses
uncertainty regime. This is unfair, since it is clear that t
FDM is a FT followed by diagonalization, whereas CFM is
FT followed by location of zeroes~vide supra!. Thus, the
numerical efficiency of the FDM for eigenvalue determin
tion, can be compared with that of the CFM, only after t
location of zeroes have been performed. As the notion of
uncertainty principle comes from the FT and the filterati
step in both methods@step~a!# also utilizes the FT, this step
can be unambiguously compared, as we have expla
above.

We now point out the source of convergence for spec
filters, which is valid for FDM as well as CFM. In the
present formulation, we have utilized a Chebyshev exp
sion for the time propagator@4# in Eqs. ~1! and ~3!. This
includes a Bessel function in the series, whose argumen
the time-energy phase-space volume,tDl, and it is well
known that the Bessel function exponentially goes to zero
its order is greater than its argument. This provides the n
essary convergence for the Chebyshev series. MC, on
other hand, suggest this convergence due to the ‘‘subsp
aspect of the problem. This is only partly true, as the nat
of subspace is determined by the matrix-vector recurs
procedure, which is different for different polynomials ut
lized to expand the time propagator. In fact, the series exp
sion of the time propagator with other orthogonal polynom
als ~e.g., Hermite@7#! have different rate of convergence.

We now remark on the Lanczos recursion method as it
been discussed in the preceding comment@3#, even though
we did not make such a comparison in Ref.@2#. We first note
that the FDM shares many operational details with the La
zos recursion method and thus it makes sense to com
their numerical efficiencies. Now, since the eigenvalue i
time-independent concept, it is not mandatory to utilize tim
dependent methods like the FDM. Therefore, there is na
priori limit on the efficiency of any algorithm that it has t
satisfy the uncertainty principle, as long as we do not invo
the Fourier transformation in its derivation. As the Lancz
method is based on the principle that a matrix satisfies
own polynomial, it is expected that one has to carry out
leastM matrix-vector products for aM3M matrix, in order
to faithfully recover the whole spectrum. This point is furth
confirmed in the preceding comment@3#. It is also well
known that the well-separated eigenvalues converge m
faster in the Lanczos recursion method. Further, it is imp
tant to note the observation in the preceding comment
the Lanczos method provides eigenvalues more efficie
than the FDM for the present model Hamiltonian@3#.
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